• 名称: MDA-MB-231(人乳腺癌细胞)
  • 货号: CBP60382
  • 浏览次数: 3963
  • 已销售数量:0件
  • 评论信息
  • 购买数量:  购买数量不能低于最少订购数量!

购买 询价 收藏 QQ交流 好友推荐

CBP60382

 

 

I. General information

Synonyms:

MDA-MB 231; MDA.MB.231; MDA MB 231; MDA MB231; MDA Mb231; MDA-MB231; MDAMB231; MDA-231; MDA231; MB231

Background:

Established in 1973 from the pleural effusion of a 51-year-old woman with breast carcinoma

Species:

Homo sapiens, human

Tissue:

Mammary gland/breast; derived from metastatic site: pleural effusion

Disease:

Breast adenocarcinoma

Gender:

Female, 51-year-old

Morphology:

Epithelial cells growing adherently as monolayer

Growth Mode:

Adherent

Doubling Time:

ca. 25-30 hours

DNA Profile:

Amelogenin: X
CSF1PO: 12,13
D13S317: 13
D16S539: 12
D5S818: 12
D7S820: 8,9
THO1: 7,9.3
TPOX: 8,9
vWA: 15,18/15,19
Cobioer’s Cell Line Authentication Service

Culture Medium:

DMEM+ 10% FBS
We strongly suggest to purchase the complete medium from Cobioer.

Cryopreservation medium:

90% FBS+10%DMSO

Photo:

 

Oncogene:

The cells express the WNT7B oncogene.

Receptor Expression:

Epidermal growth factor (EGF), expressed

transforming growth factor alpha (TGF alpha), expressed

Tumor Formation:

Yes, in ALS treated BALB/c mice, forms poorly differentiated adenocarcinoma (grade III)

Yes, in nude mice, forms poorly differentiated adenocarcinoma (grade III)

Immunology:

cytokeratin +, cytokeratin-7 +, cytokeratin-8 +, cytokeratin-17 -, cytokeratin-18 +, cytokeratin-19 +, desmin -, endothel -, EpCAM -, GFAP -, neurofilament -, vimentin +

Viruses:

PCR: EBV -, HBV -, HCV -, HIV -, HTLV-I/-II -, MLV -

Comments:

For more information, please contact Cobioer (4008-750-250).

 

II. Handling Procedure for Flask Cultures

The flask was seeded with cells grown and completely filled with medium at Cobioer to prevent loss of cells during shipping.
1.Upon receipt visually examine the culture for macroscopic evidence of any microbial contamination.
Using an inverted microscope (preferably equipped with phasecontrast optics), carefully check for any evidence of microbial contamination. Also check to determine if the majority of cells are still attached to the bottom of the flask; during shipping the cultures are sometimes handled roughly and many of the cells often detach and become suspended in the culture medium (but are still viable).
2.If the cells are still attached, aseptically remove all but 5 to 10 mL of the shipping medium. The shipping medium can be saved for reuse. Incubate the cells at 37°C without CO2 in air atmosphere until they are ready to be subcultured.
3.If the cells are not attached, aseptically remove the entire contents of the flask and centrifuge at 1000rpm for 5 to 10 minutes. Remove shipping medium and save. Resuspend the pelleted cells in 10 mL of this medium and add to 25 cm2 flask. Incubate at 37°C without CO2 in air atmosphere until cells are ready to be subcultured.

 

III. Subculturing Procedure

Volumes are given for a 75 cm2 flask. Increase or decrease the amount of dissociation medium needed proportionally for culture vessels of other sizes.
1.Remove and discard culture medium.
2.Briefly rinse the cell layer with 0.25% (w/v) Trypsin0.53 mM EDTA solution to remove all traces of serum that contains trypsin inhibitor.
3.Add 2.0 to 3.0 mL of Trypsin-EDTA solution to flask and observe cells under an inverted microscope until cell layer is dispersed (depend on the batch of trypsin).
Note: To avoid clumping do not agitate the cells by hitting or shaking the flask while waiting for the cells to detach. Cells that are difficult to detach may be placed at 37°C to facilitate dispersal.
4.Add 6.0 to 8.0 mL of complete growth medium and aspirate cells by gently pipetting.
5.Add appropriate aliquots of the cell suspension to new culture vessels.
6.Incubate cultures at 37°C without CO2.
Subcultivation Ratio: A subcultivation ratio of 1:2 to 1:4 is recommended
Medium Renewal: 2 to 3 times per week

 

IV. Cryopreservation Procedure

Volumes used in this protocol are for 75 cm2 flask; proportionally reduce or increase amount of dissociation medium for culture vessels of other sizes.
1.Remove and discard culture medium.
2.Briefly rinse the cell layer with 0.25% (w/v) Trypsin0.53mM EDTA solution to remove all traces of serum which contains trypsin inhibitor.
3.Add 2.0 to 3.0 mL of Trypsin-EDTA solution to flask and observe cells under an inverted microscope until cell layer is dispersed (usually within 1 to 10 minutes).
Note: To avoid clumping do not agitate the cells by hitting or shaking the flask while waiting for the cells to detach. Cells that are difficult to detach may be placed at 37°C to facilitate dispersal.
4.Add 6.0 to 8.0 mL of complete growth medium and aspirate cells by gently pipetting.
5.To remove trypsin-EDTA solution, transfer cell suspension to a centrifuge tube and spin at approximately 1000rpmfor 5 to10 minutes.
6.Discard supernatant and resuspend cells in cryopreservation medium.
7.Transfer the cells into Cryogenic Vials, 1ml/vial.
8.Frozen the cells in cryogenic container (Nalgene #5100-0001).

 

V. Database

Mutation:

Mutation Gene

Zygosity

Gene Sequence

Protein Sequence

CDKN2A

Homozygous

c.1_471del471

p.0?

BRAF

Heterozygous

c.1391G>T

p.G464V

KRAS

Heterozygous

c.38G>A

p.G13D

TP53

Homozygous

c.839G>A

p.R280K

For more information, Please visit
http://www.cobioer.com/sjk/&pmcId=77.html

Expression:

STAMBP, PCNXL4, SNAPC1
For more information, Please visit
http://www.cobioer.com/sjk/&pmcId=77.html

Comments:

For more information, please contact Cobioer(4008-750-250).

 

VI. References

1. PubMed=22336246; DOI=10.1016/j.bmc.2012.01.017; Kong D., Yamori T.; "JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs."; Bioorg. Med. Chem. 20:1947-1951(2012).

2. PubMed=22460905; DOI=10.1038/nature11003; Barretina J., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.K., Yu J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L., Winckler W., Reich M., Li N., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.; "The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity."; Nature 483:603-607(2012).

3. PubMed=23601657; DOI=10.1186/bcr3415; Riaz M., van Jaarsveld M.T.M., Hollestelle A., Prager-van der Smissen W.J.C., Heine A.A.J., Boersma A.W.M., Liu J., Helmijr J., Ozturk B., Smid M., Wiemer E.A., Foekens J.A., Martens J.W.M.; "miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs."; Breast Cancer Res. 15:R33-R33(2013).

4. PubMed=23856246; DOI=10.1158/0008-5472.CAN-12-3342; Abaan O.D., Polley E.C., Davis S.R., Zhu Y.J., Bilke S., Walker R.L., Pineda M., Gindin Y., Jiang Y., Reinhold W.C., Holbeck S.L., Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.; "The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology."; Cancer Res. 73:4372-4382(2013).
5. PubMed=23933261; DOI=10.1016/j.celrep.2013.07.018; Moghaddas Gholami A., Hahne H., Wu Z., Auer F.J., Meng C., Wilhelm M., Kuster B.; "Global proteome analysis of the NCI-60 cell line panel."; Cell Rep. 4:609-620(2013).
6. PubMed=25485619; DOI=10.1038/nbt.3080; Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z., Liu H., Degenhardt J., Mayba O., Gnad F., Liu J., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.; "A comprehensive transcriptional portrait of human cancer cell lines."; Nat. Biotechnol. 33:306-312(2015).
7. PubMed=26055192; DOI=10.1021/acs.jproteome.5b00375; Cifani P., Kirik U., Waldemarson S., James P.; "Molecular portrait of breast-cancer-derived cell lines reveals poor similarity with tumors."; J. Proteome Res. 14:2819-2827(2015).
8. PubMed=26218769; DOI=10.1016/j.jchromb.2015.07.021; Willmann L., Schlimpert M., Halbach S., Erbes T., Stickeler E., Kammerer B.; "Metabolic profiling of breast cancer: differences in central metabolism between subtypes of breast cancer cell lines."; J. Chromatogr. B 1000:95-104(2015).
9. PubMed=26649326; DOI=10.1016/j.dib.2015.09.039; Cox T.R., Schoof E.M., Gartland A., Erler J.T., Linding R.; "Dataset for the proteomic inventory and quantitative analysis of the breast cancer hypoxic secretome associated with osteotropism."; Data Brief 5:621-625(2015).
10. PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X., Egan R.K., Liu Q., Mironenko T., Mitropoulos X., Richardson L., Wang J., Zhang T., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.; "A landscape of pharmacogenomic interactions in cancer."; Cell 166:740-754(2016).

关键词: